TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic

TB62725P, TB62725F, TB62725FN

8-bit Constant-Current LED Driver with Operating Voltage of 3.3 V

The TB62725 series is comprised of constant-current drivers designed for LEDs and LED displays. The output current value can be set using an external resistor.

As a result, all outputs will have virtually the same current levels.

This driver incorporates a 8 -bit constant-current output, a 8 -bit shift register, a 8 -bit latch and a gate circuit.

These drivers have been designed using the Bi-CMOS process.

Features

- Output current capability and number of outputs: $90 \mathrm{~mA} \times 8$ outputs
- Constant current range: $2 \sim 80 \mathrm{~mA}$
- Application output voltage:
0.7 V (output current $2 \sim 80 \mathrm{~mA}$)
0.4 V (output current $2 \sim 40 \mathrm{~mA}$)
- For anode-common LEDs
- Input signal voltage level: 3.3-V CMOS level (Schmitt trigger input)
- Maximum output terminal voltage: 17 V
- Serial data transfer rate: 20 MHz (max, cascade connection)
- Operating temperature range $\mathrm{T}_{\mathrm{opr}}=-40 \sim 85^{\circ} \mathrm{C}$
- Package:

Type P: DIP16-P-300-2.54A
Type F: SSOP16-P-225-1.00A
Type FN: SSOP16-P-225-0.65B

- Package and pin layout: Pin layout and functionality are similar to those of the TB62705. (Each characteristic value is different.)
- Constant-current error accuracy (all outputs on)

	Current accuracy		
	between bits	between ICs	
$\geqq 0.4 \mathrm{~V}$			$2 \sim 40 \mathrm{~mA}$
			$2 \sim 80 \mathrm{~mA}$

Weight
DIP16-P-300-2.54A: 1.11 g (typ.)
SSOP16-P-225-1.00A: 0.14 g (typ.)
SSOP16-P-225-0.65B: 0.07 g (typ.)

Pin Assignment (top view)

Pin layout and functionality are similar to those of the TB62705C. (each characteristic value is different.)

Block Diagram

Truth Table

CLOCK	$\overline{\text { LATCH }}$	$\overline{\text { ENABLE }}$	SERIAL-IN	$\overline{\text { OUT0 }} \cdots \overline{\text { OUT5 }} \cdots \overline{\text { OUT7 }}$	SERIAL-OUT
$\boldsymbol{\sim}$	H	L	Dn	$\mathrm{Dn} \cdots \mathrm{Dn}-5 \cdots \mathrm{Dn}-7$	$\mathrm{Dn}-7$
$\boldsymbol{\sim}$	L	L	$\mathrm{Dn}+1$	No Change	$\mathrm{Dn}-6$
\uparrow	H	L	$\mathrm{Dn}+2$	$\mathrm{Dn}+2 \cdots \mathrm{Dn}-3 \cdots \mathrm{Dn}-5$	$\mathrm{Dn}-5$
$\square \downarrow \mathrm{X}$	X	L	$\mathrm{Dn}+3$	$\mathrm{Dn}+2 \cdots \mathrm{Dn}-3 \cdots \mathrm{Dn}-5$	$\mathrm{Dn}-5$
\downarrow	X	H	$\mathrm{Dn}+3$	OFF	$\mathrm{Dn}-5$

Note 1: $\overline{\text { OUT0 }} \sim \overline{\text { OUT7 }}=\mathrm{ON}$ when $\mathrm{Dn}=$ "H"; $\overline{\mathrm{OUT}} \sim \overline{\text { OUT7 }}=\mathrm{OFF}$ when $\mathrm{Dn}=$ "L". In order to ensure that the level of the power supply voltate is correct, an external resistor must be connected between R-EXT and GND.

Timing Diagram

Warning: Latch circuit is leveled-latch circuit. Be careful because it is not triggered-latch circuit.
Note 2: The latches circuit holds data by pulling the $\overline{\overline{L A T C H}}$ terminal Low.
And, when $\overline{\text { LATCH }}$ terminal is a " H " level, latch circuit doesn't hold data, and it passes from the input to the output.
When $\overline{\text { ENABLE }}$ terminal is a "L" level, output terminal $\overline{\text { OUTO }} \sim \overline{\text { OUT7 }}$ respond to the data, and on \& off does.
And, when ENABLE terminal is a " H " level, it offs with the output terminal regardless of the data.

Terminal Description

Pin No.	Pin Name	
1	GND	GND terminal for control logic.
2	SERIAL-IN	Input terminal for serial data for data shift register.
3	CLOCK	Input terminal for clock for data shift on rising edge.
4	$\overline{\text { LATCH }}$	Input terminal for data strobe. When the $\overline{\text { LATCH }}$ input is driven High, data is latched. When it is pulled Low, data is hold.
$5 \sim 12$	$\overline{\text { OUTO } \sim \overline{\text { OUT7 }}}$	Constant-current output terminals.
13	$\overline{\text { ENABLE }}$	Input terminal for output enable. All outputs ($\overline{\text { OUT0 }} \sim \overline{\text { OUT7 }}$) are turned off, when the $\overline{\text { ENABLE }}$ And are turned on, when the terminal is driven Low.
14	SERIAL-OUT	Output terminal for serial data input on SERIAL-IN terminal.
15	R-EXT	Input terminal used to connect an external resistor. This regulated the output current.

Equivalent Circuits for Inputs and Outputs

$\overline{\text { ENABLE }}$ terminal

CLOCK, SERIAL-IN terminal

$\overline{\text { OUTO }} \sim \overline{\text { OUT7 }}$ terminals

$\overline{\text { LATCH }}$ terminal

SERIAL-OUT terminal

Maximum Ratings ($\mathrm{T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Rating	Unit
Supply voltage		$V_{\text {DD }}$	7	V
Input voltage		$\mathrm{V}_{\text {IN }}$	$-0.2 \sim V_{D D}+0.2$	V
Output current		lout	90	$\mathrm{mA} / \mathrm{ch}$
Output voltage		V OUT	-0.2~17	V
Power Dissipation (Note 3)	P-type (when not mounted)	$\mathrm{P}_{\mathrm{d} 1}$	1.47	W
	F/FN-type (when not mounted)	$\mathrm{P}_{\mathrm{d} 2}$	0.37	
	F/FN-type (On PCB)		0.78	
Thermal Resistance (Note 3)	P-type (when not mounted)	$\mathrm{R}_{\text {th }}(\mathrm{j}-\mathrm{a}) 1$	85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	F/FN-type (when not mounted)	$\mathrm{R}_{\text {th }}(\mathrm{j}-\mathrm{a}) 2$	330	
	F/FN-type (On PCB)		160	
Operating Temperature		Topr	-40~85	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$

Note 3: N-Type: Powes dissipation is derated by $11.76 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ if device is mounted on PCB and ambient temperature is above $25^{\circ} \mathrm{C}$.
F- and FN-Type: Powes dissipation is derated by $7.69 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ if device is mounted on PCB and ambient temperature is above $25^{\circ} \mathrm{C}$.

With device mounted on glass-epoxy PCB of less than $40 \% \mathrm{Cu}$ and of dimensions
$50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Recommended Operating Conditions ($\mathrm{T}_{\mathrm{opr}}=-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$ unless otherwise specified)

Characteristics		Symbol	Conditions		Min	Typ.	Max	Unit	
Supply voltage		$V_{\text {DD }}$	-		3	3.3	3.6	V	
Output voltage		$\mathrm{V}_{\text {OUT }}$	-		-	0.7	4	V	
Output current		IOUT	Each DC 1 circuit		2	-	80	$\mathrm{mA} / \mathrm{ch}$	
		IOH	SERIAL-OUT		-	-	-1	mA	
		IOL	SERIAL-OUT		-	-	1		
Input voltage		V_{IH}	-		$\begin{aligned} & 0.7 \times \\ & V_{D D} \end{aligned}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}+ \\ 0.15 \end{gathered}$	mA	
		VIL			-0.15	-	$\begin{aligned} & 0.3 \times \\ & V_{D D} \end{aligned}$		
Clock frequency		$\mathrm{f}_{\text {CLK }}$	Cascade Connected		-	-	20	MHz	
$\overline{\text { LATCH }}$ pulse width		$t_{\text {wLAT }}$	-		50	-	-	ns	
$\overline{\text { ENABLE }}$ pulse width(Note 4)		$t_{w E N A}$	l OUT $\geqq 20 \mathrm{~mA}$		2	-	-	$\mu \mathrm{S}$	
		l OUT $\leqq 20 \mathrm{~mA}$	3	-	-				
CLOCK pulse width			$t_{\text {wCLK }}$	-		25	-	-	ns
Set-up time for CLOCK terminal		tSETUP1	10			-	-		
Hold time for CLOCK terminal		thold	5			-	-		
Set-up time for $\overline{\text { LATCH }}$ terminal		tsETUP2	50			-	-		
Power dissipation	P-type	$\mathrm{P}_{\mathrm{d} 1}$	$\mathrm{T}_{\text {opr }}=85^{\circ} \mathrm{C}$	When not mounted	-	-	0.82	W	
	F-type	$\mathrm{P}_{\mathrm{d} 2}$		On PCB	-	-	0.35		
	FN-type	$\mathrm{P}_{\mathrm{d} 3}$			-	-	0.35		

Note 4: When the pulse of the "L" level is inputted to the ENABLE terminal held in the " H " level.

Electrical Characteristics ($\mathrm{T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified)

Characteristics	Symbol	Test Circuit	Conditions		Min	Typ.	Max	Unit
Supply voltage	$V_{\text {DD }}$	-	Normal operation		3.0	3.3	3.6	V
Output current	IOUT1	-	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =490 \Omega \end{aligned}$	29.8	35.1	40.3	mA
	IOUT2	-	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =250 \Omega \end{aligned}$	58.4	68.7	79.0	
Output current Error between bits	$\Delta \mathrm{l}$ OUT1	-	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$, All outouts ON	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =490 \Omega \end{aligned}$	-	± 1.5	± 6	\%
	$\mathrm{I}^{\text {OUT2 }}$	-	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$, All outouts ON	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =250 \Omega \end{aligned}$	-	± 1.5	± 6	
Output leakage current	loz	-	$\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$		-	1	5	$\mu \mathrm{A}$
Input voltage	V_{IH}	-	-		$\begin{gathered} 0.7 \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	-	$V_{\text {DD }}$	V
	VIL	-	-		GND	-	$\begin{gathered} 0.3 \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	
SOUT terminal Output voltage	V_{OH}	-	$\mathrm{IOH}^{\prime}=1.0 \mathrm{~mA}$		-	-	0.3	V
	V_{OL}	-	$\mathrm{lOL}=-1.0 \mathrm{~mA}$		3	-	-	
Output current Supply voltage Regulation	\%/VDD	-	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \rightarrow 3.6 \mathrm{~V}$		-	-1.5	-5	\%
Pull-up resistor	R (Up)	-	$\overline{\text { ENABLE }}$ terminal		100	200	400	$\mathrm{k} \Omega$
Pull-down resistor	R (Down)	-	$\overline{\text { LATCH }}$ terminal		125	250	500	
Supply current	$\mathrm{IDD} \mathrm{(OFF)} 1$	-	$\mathrm{V}_{\text {OUT }}=15.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =\mathrm{OPEN} \end{aligned}$	-	1	2	mA
	$\mathrm{IDD} \mathrm{(OFF)} 2$	-	$\mathrm{V}_{\text {OUT }}=15.0 \mathrm{~V}$, All outputs OFF	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =490 \Omega \end{aligned}$	1	3	5	
	IDD (OFF) 3	-	$\mathrm{V}_{\text {OUT }}=15.0 \mathrm{~V}$, All outputs OFF	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =250 \Omega \end{aligned}$	3	6	8	
	$\operatorname{IDD~(ON)~} 1$	-	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$, All outputs ON	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =490 \Omega \end{aligned}$	-	6	9	
		-	Same as the above,$\mathrm{T}_{\mathrm{opr}}=-40^{\circ} \mathrm{C}$		-	-	15	
	IDD (ON) 2	-	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$, All outputs ON	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}} \\ & =250 \Omega \end{aligned}$	-	12	17	
		-	Same as the above,$\mathrm{T}_{\mathrm{opr}}=-40^{\circ} \mathrm{C}$		-	-	29	

Switching Characteristics ($\mathrm{T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}$ unless otherwise specifed)

Characteristics	Symbol	Test circuit	Conditions	Min	Typ.	Max	Unit
Propagation delay time	$\mathrm{t}_{\mathrm{pLH}} 1$	-	$\begin{aligned} & \text { CLK- } \overline{\mathrm{OUT}}, \overline{\mathrm{LATCH}}=" \mathrm{H} ", \\ & \overline{\mathrm{ENABLE}}=\text { "L" } \end{aligned}$	-	150	300	ns
	$t_{\text {tpLH2 }}$	-	$\begin{aligned} & \overline{\text { LATCH }}-\overline{\mathrm{OUTn}}, \\ & \overline{\text { ENABLE }}=\text { "L" } \end{aligned}$	-	140	300	
	$t_{\text {pLH3 }}$	-	$\begin{aligned} & \overline{\overline{\text { ENABLE }} \cdot \overline{\mathrm{OUTn}},} \\ & \overline{\mathrm{LATCH}}=\text { " } \mathrm{H} " \end{aligned}$	-	140	300	
	$t_{\text {pLH }}$	-	CLK-SERIAL OUT	2	5	-	
	$\mathrm{t}_{\mathrm{pHL}} 1$	-	$\begin{aligned} & \text { CLK- } \overline{\mathrm{OUTn}}, \overline{\mathrm{LATCH}}=" \mathrm{H} ", \\ & \overline{\mathrm{ENABLE}}=" \mathrm{~L} " \end{aligned}$	-	170	340	
	$\mathrm{t}_{\mathrm{pHL}} 2$	-	$\begin{aligned} & \overline{\mathrm{LATCH}}-\overline{\mathrm{OUTn}}, \\ & \overline{\text { ENABLE }}=\text { "L" } \end{aligned}$	-	170	340	
	tpHL	-	$\begin{aligned} & \overline{\overline{\text { ENABLE }}-\overline{\text { OUTn }},} \\ & \overline{\text { LATCH }}=\text { "H" } \end{aligned}$	-	170	340	
	$\mathrm{t}_{\mathrm{pHL}}$	-	CLK-SERIAL OUT	2	5	-	
Output rise time	tor	-	10~90\% of voltage waveform	40	85	150	ns
Output fall time	$\mathrm{t}_{\text {f }}$	-	90~10\% of voltage waveform	40	70	150	ns
Maximum CLOCK rise time	tr_{r}	-	Cascade connection isn't guarantee.	-	-	5	us
Maximum CLOCK fall time	$\mathrm{tf}^{\text {f }}$	-		-	-	5	us

Conditions: (Refer to test circuit.)

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{Opr}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=490 \Omega, \mathrm{l}_{\mathrm{OUT}}=37.5 \mathrm{~mA}, \\
& \mathrm{~V}_{\mathrm{L}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{\mathrm{L}}=10.5 \mathrm{pF}
\end{aligned}
$$

Note 5: If the device is connected in a cascade and t_{r} / t_{f} for the waveform is large, it may not be possible to achieve the timing required for data transfer. Please consider the timings carefully.

Test Circuit

[^0]Timing Waveforms

1. CLOCK, SERIAL-IN, SERIAL-OUT

2. CLOCK, SERIAL-IN, $\overline{\text { LATCH }}, \overline{\text { ENABLE }}, \overline{\text { OUTn }}$

3. $\overline{\text { OUTn }}$
$\overline{\text { OUTn }}$

Output Curent - Duty (LED turn-on rate)

Output Current - Rext Resistor

тоонна
It is recommended that TB62726 Series recommend device be used in a cascade connection with $\mathrm{V}_{\mathrm{LED}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and a data transfer rate fclk = 20 (MHz)

1) Vf_{f} of LED is $\mathrm{Vf}_{\mathrm{f}}=2.5 \mathrm{~V}(\max)$.
(2) Output saturation $\mathrm{Vce} 1=0.4 \mathrm{~V}(\min)$ at TB62726 $\mathrm{I}_{\text {out }} \leqq 40 \mathrm{~mA}$ (3) Output saturation Vce2 $=0.25 \mathrm{~V}$ (max) at TD62M8600F Ic $=-1 \mathrm{~A}$ (4) TB62726 can operate with VDDopr $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

тоенНеа
Application Notes (example 2)
TB62725P/F/FN application circuit (for VLED > 17 V)
Example: An unnecessary voltage in the case of VLED $>17 \mathrm{~V}$ makes a voltage descend by the Zener diode.

тоонна
Application Notes (example 3)
TB62725P/F/FN application circuit (with V LED $\leqq 17 \mathrm{~V}$, the case of the over-saturation)
Example: An over-saturation voltage makes a voltage descend by the resistance with the outside.
Conditions: (1) LED is turned on when IOUT $=20 \mathrm{~mA}$.
Saturation voltage $=0.4 \mathrm{~V}(\mathrm{~min})$ at $\mathrm{IC}=20 \mathrm{~mA}$ of TB62725
r1: Resistance for setting up output current
r2: Resistance for LED module brightness adjustment
\qquad

Notes

- Operation may become unstable due to the electromagnetic interference caused by the wiring and other phenomena.
To counter this, it is recommended that the IC be situated as close as possible to the LED module. If overvoltage is caused by inductance between the LED and the output terminals, both the LED and the terminals may suffer damage as a result.
- There is only one GND terminal on this device when the inductance in the GND line and the resistor are large, the device may malfunction due to the GND noise when output switchings by the circuit board pattern and wiring.
To achieve stable operation, it is necessary to connect a resistor between the REXT terminal and the GND line. Fluctuation in the output waveform is likely to occur when the GND line is unstable or when a capacitor (of more than 50 pF) is used.
Therefore, take care when designing the circuit board pattern layout and the wiring from the controller.
- This application circuit is a reference example and is not guaranteed to work in all conditions. Be sure to check the operation of your circuits.
- This device does not include protection circuits for overvoltage, overcurrent or overtemperature. If protection is necessary, it must be incorporated into the control circuitry.
- The device is likely to be destroyed if a short-circuit occurs between either of the power supply pins and any of the output terminals when designing circuits, pay special attention to the positions of the output terminals and the power supply terminals (VDD and VLED), and to the design of the GND line.

Package Dimensions

DIP16-P-300-2.54A

Weight: 1.1 g (typ.)

Package Dimensions

SSOP16-P-225-1.00A

Weight: 0.14 g (typ.)

Package Dimensions

SSOP16-P-225-0.65B
Unit : mm

Weight: 0.07 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

[^0]: $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$
 $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
 $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$
 (10\% to 90\%)

